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Scattering of Radiation by a Quasiperiodic 
Two-Dimensional Medium 
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We study the scattering of radiation by a medium presenting inhomogeneities 
distributed in a quasiperiodic way. We show the existence of quasiperiodic 
solutions of the two-dimensional stationary wave equation, under certain con- 
ditions on the index of refraction, using a technique based on Dinaburg-Sinai 
method for one-dimensional Schr6dinger equation with a quasiperiodic poten- 
tial. Moreover we show that the energy spctrum contains a nonempty absolutely 
continuous component, with a subset having high degeneracy, provided the 
inhomogeneities are small enough. 

KEY WORDS: Two-dimensional wave equation; quasiperiodic index of 
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solutions; absolutely continuous spectrum; degeneracy. 

1. I N T R O D U C T I O N  

There are many problems concerning the optical properties of 
inhomogeneous materials which arise in several fields, examples given in 
the study of the atmosphere, optical mineralogy, chemistry, etc. There 
can be many different causes for which a material is not optically 
homogeneous; the most common are anisotropies, crystal lattice dis- 
locations, particulate inclusions, and so on (see Ref. 1 for an introduction 
to these problems). One way of modeling the propagation of light in 
inhomogeneous materials is to consider an index of refraction depending 
on spatial coordinates (see, e.g., Ref. 2); we will describe more precisely the 
scattering of radiation by particles distributed in a quasiperiodic way along 
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one spatial direction. In such a case, the equation for stationary waves is 
the Helmholtz' one: (3) 

A0 + ~ E q ,  = 0  (1.a) 

where 0 is any component of magnetic or electric field, E is the square of 
the frequency of the wave, and n = C(#med) 1/2 (index of refraction) is a 
quasiperiodic function of one spatial variable; here c is the speed of the 
light in the vacuum, Um is the absolute magnetic permeability, and e~ is the 
absolute dielectric constant. The equation (1.1) is equivalent to the eigen- 
value equation for a Laplace Beltrami operator on a Riemanian manifold 
endowed with a quasiperiodic metric (Section 2). For the sake of simplicity, 
we have studied the case of a two-dimensional cylinder, but we believe that 
there is no difficulty in extending the result in the three- 
dimensional case, which corresponds to an optic fiber. 

Let the refraction index n have spatial frequencies given by ool ,..., e)~ 
and satisfying a diophantine condition. (4) We show that there are many 
spatially quasiperiodic solutions with spatial frequencies 2, o)1 ..... co~ 
provided 2 belongs to a certain Cantor set of positive Lebesgue measure. 
The values of E corresponding to these solutions are also given by a 
Cantor set g of positive Lebesgue measure. In other words, the medium is 
transparent only for the waves with frequencies in such a set. 

Actually, this result is valid only if the modulation of n is not too large 
(nearly flat metric); and in this case the set g is concentrated in the low- 
frequency (infrared) region. Thus infrared waves are likely to cross the 
optic fiber, whereas ultraviolet waves are absorbed. 

Mathematically, we first decompose the space of the solutions of the 
equation (1.1) into a direct sum of subspaces corresponding each to an 
eigenspace for the rotational symmetry around the axis of the fiber. The 
problem is then reduced to a family of one-dimensional equations indexed 
by an integer m representing the quantum number for the angular momen- 
tum (th~ infinitesimal generator of the rotational symmetry). The existence 
theorem i,s valid only for small values of m. Thus the modes with many 
nodes in the angular direction are unlikely to travel across the optic fiber. 
These one-dimensional equations have quasiperioltic coefficients. It is 
therefore possible to use the method of Kolmogoroff, Arnold, and 
Moser, (s) developed in classical mechanics for proving the stability of 
nearly integrable Hamiltonian systems. The method has been adapted to 
study the spectral properties of a Schr6dinger equation in a quasiperiodic 
medium by Dinaburg and Sinai, (6) Belokolos, iv) and the estimates have 
been improved by Rfissmann. (8) We will actually use this latter work as a 
guideline. The Schr6dinger equation with a quasiperiodic potential arose in 
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physics for the following problems: a Bloch electron in a magnetic field, 
neglecting interband contributions, (9) the metal-insulator transition in 
organic conducting chains, (1~ the stability of the motion of a particle in the 
gravitational field of several planets, (u) etc. For  a review of results on this 
equation and the more general case of almost periodic potential, see, e.g., 
Ref. 12. In our problem, however, we need an additional analysis to 
estimate the range g of values of E which corresponds to the quasiperiodic 
solutions of (1.1). The main contribution of this paper is concentrated on 
this problem. 

We also show that on ~ the Laplace-Beltrami operator has 
an absolutely continuous spectral measure. We remark that, to our 
knowledge, there are no examples of absolutely continuous spectra for two- 
dimensional problems connected to quasiperiodic Schr6dinger equations. 
There are some results in the case of a band for the discrete Schr6dinger 
equation with a stochastic potential (see, e.g., Ref. 13). 

Moreover we show that, provided the refraction index is close enough 
to a constant, certain subsets of g with a positive Lebesgue measure corres- 
pond to a multiple spectrum. The corresponding degeneracy comes from 
the transmission of several rotational modes in the fiber. 

This work is organized as follows: Section 2 is devoted to the introduc- 
tion of the technical machinery and the rigorous statement of the results. In 
Section 3 we outline the proofs of these statements. 

2. DEF IN IT IONS,  H Y P O T H E S I S ,  A N D  RESULTS 

In this section we set up notations and we state our results in precise 
form. 

F o r v e N ,  a nda ,  b i n  N V o r C  v ,wese t  

(a, b)= L aibi, Ilall = L tazl, lal = max [ail 
i - - 1  i = 1  i=l,...,v 

We say that coe Nv satisfies a diophantine condition (a) if there exists a 
Rtissmann approximation function (R.A.F.) ~2 (see Ref. 8) such that 

I(kco)P >~(Ik l)  Vk~ZV\{0} (2.1) 

As in Riissmann, (s) we introduce, for 6 > 0, 

~2(a) = f _ f2 e -s ds 
Oo 
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and 
2 I 1 

T2(6)=inf  ~2(5t) ,6o>~51>~"" >~6t>~'"O; 6t<~6 
l ~ 0  

Serra 

where F: R ~ ~ is a continuous quasiperiodic function, bounded away 
from zero. 

Let coe R v satisfy condition (2.1). We shall assume that there is 
v: R--*R and 0 < e ~ l  such that 

1 
= 1 - av(x) (2.2) 

F(x) 

Moreover, v wilkbe a quasiperiodic function with mean zero and frequency 
module 7/vo (c0 e Rv). In addition, v will be analytic in the following sense: 
there exists r > 0 such that there is a holomorphic and 2n-periodic function 

V: B(r) c_ C v ~ C 

which is real for real arguments and satisfies 

v(x) = V(~ox) Vx e 

Ilvll,--- sup IV(z)[<oo 
z ~ B ( r )  

gij(x, y) = F(x) 

We have (8'14) 

r < ~u2(a) < oo Va > 0 

Let p, R, and d be three positive constants. We define the sets 

B(p)= {zeCV: IImzl <p}  

A(co, O , R ) =  {2eC:  ]2- l (ke)) l  >jO(Ikl) ,VkeZV; ]Im21 < R }  

D(d)= {peC:  IP] <d}  

Now we define our manifold and we state the technical hypotheses on its 
quasiperiodic metric. 

Let Q be the manifold: 

Q = { x , y : x e ~ , y e T  R/Z} 

endowed with the metric 
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From the analyticity of v it follows that its Fourier coefficients are 
exponentially decreasing, namely, 

v(x) = ~ vk exp{i(kco)x} 

Irk] ~< exp ( - r  IPkl]) Vk~ 7/~\{0} 

Now we can define the Laplace-Beltrami operator A o induced by the 
metric g~(x, y) on the Hilbert space J f  = L2(Q, dxdy/F(x)) by 

(Ao~p)(x, y)=F(x)  ~x2+~y2 r y) 

V~, ~ ~(AQ) _= S 

where ~(AQ)= ~ ( Q ,  dx dy) is a Sobolev space of index 2. ~15~ 
Then we set H =  -AQ and we find that the eigenvalue equation 

Hr = E~p (2.3) 

is the same as the Helmholtz equation (1.1), if n2= F(x). Before studying 
the solutions of this equation, we give the two following technical 
definitions: 

De f in i t i on  2.1 (Lipschitz holomorphy). Let A be a closed set in C 
and 9 be an open domain in C( Let ~ ( 9 )  be the space of holomorphic 
bounded functions on 9,  endowed with the uniform topology. 

Let f be a complex-valued function on A x 9;  f is called Lipschitz 
holomorphic if 

is a Lipschitz continuous from A into ~ ( 9 )  and it is holomorphic in the 
interior of A. We call ~(A, 9 )  the space of such functions. 

Moreover, we call .~(A) the space of complex-valued functions 
Lipschitz continuous function from A into ~, holomorphic in the interior 
of A. If endowed with the following norm, called Lipschitz norm, 

}f(2) - f()/)t 
f e e ' (A) ,  rlfllL=suplf(2)l + sup 

2 ~ 2 '  

N(A) is a Banach space. 



966 Serra 

D e f i n i t i o n  2.2 (interval and rectangle). If a, b are positive num- 
bers and "q" an integer such that Iq[ ~< a/4nb, Jq(a, b) is the open interval 
]Jq (a, b), J+(a, b)[  where 

a ( a 2 ) 1/2 
J,+(a, b)=~-~-f- ~-~-4nZb 2 

and Tq(a, b) is the closed rectangle in the complex plane: 

{ [ } Tq(a,b)= 2 e C : R e 2 � 9  J q ( a , b ) , ~  ;lIm,~l~<Rq(a,b) 

where 

Rq(a, b)= [J+(a, b) 2 -  \~-~j j 

T h e o r e m  2.3 (existence of quasiperiodic solutions). Let ~ be a 
R.A.F., co be a vector in 7~ v satisfying the diophantine condition (2.1). Let 
F ( x ) =  [1 -ev(x)]  -1 be chosen as in Eq. (2.2), with IIVllr< +O0 for some 
r > 0 .  

Then we set 

d(v)= {2(3/2)v+ 13[1 +.O(O)] 3/2 ~ 2 ( r - r ~ o ) l l v l l , }  -~ (2.4) 

Giving R > 0 ,  0 < r o e < r ,  mo~N,  and d > 0  such that mo<~d(v)/4nd, one 
can find (1) a sequence 0 < dine ~ dm o-  1 ~ "'" ~ do ~ d, (2) for each integer 
m, O <~m <~mo, a set Am=A(co, (2, R ) c~ Tm(d(v), d) and a complex-valued 
function E,~eNm(Am, D(dm)) such that, if le] < dm, 2~ Am, the equation 
(2.3) admits four linearly independent solutions qs +,~ with 

(a) E = Era(2, e) 

(b) qs +m( , e; X, y) = Z(2, e; coX) exp[i(2x +_ 2nmy)] 

qs 7m(,t, e; x, y) = JT(~', g; cox) exp[ --i(2x -T- 2nmy)] 

where ~ is a complex-valued function in ~(A m, {D(dm) x B(roo)}) and is 2n 
periodic with respect to the variables in B(roo). 

Remarks. (1) The number me represents the maximal number of 
rotational modes which are almost periodic, according to our estimate. 

(2) The smaller d the bigger me; the conclusion holds only if [e] < d. 
Therefore the previous result is valid only for small disorder. 

(3) The set A m is concentrated in the low-energy region, and is a 
Cantor set. Points outside A m but in the small rectangle Tm(d(v), d) are 
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resonant points, for which a weird behavior is expected. On the other hand, 
2 represents a wave vector, and the equation E = Em(2, ~) is the dispersion 
law in this medium. We think that Em is also a weird function of 2 having 
infinitely many absorption bands near the resonant points. 

(4) This result is only a sufficient condition for the existence of such 
solutions. In particular, the numerical estimates are certainly not the 
Optimal ones. However, as usual in this kind of problem, we believe that 
this theorem gives a qualitatively correct picture of what is going on. In 
particular, we hope that, apart from possible numerical improvements in 
the size of the several quantities involved, the medium is indeed transparent 
only in the infrared region, for only a finite number of rotational modes, 
and that it has a very intricate absorption spectrum. 

(5) If we decrease f2(0), we increase the set of ~o's for which the result 
is valid; simultaneously we decrease d(v), which means that we decrease the 
maximal value of the product emo for which the previous theorem applies. 

(6) The constant r~ represents a loss of analyticity for + I//u com- 
pared to v. The closer r~ to r the bigger ~2(r- r~o)  and the smaller d(v). 

(7) We remark also that d(v), which in a sense measures the size of 
the highest value of e for which our result holds, varies like 2-c3/2/v as a 
function of v. In the usual K.A.M. theorem, v represents the number of 
degrees of freedom, and the critical value of the coupling varies like (v!) -~ 
for some a > 0. This can be interpreted either as a special feature of the 
previous linear problem, or as the fact that the usual estimates are not the 
o p t i m a l  o n e s .  O6) 

We see now that some additional hypotheses on the upper bound of e, 
namely, d, and on the R.A.F. f2 imply a positive Lebesgue measure of the 
known part of the spectrum. 

P r o p o s i t i o n  2.4 (positive Lebesgue measure of the spectrum). If, 
besides all hypotheses of Theorem 2.3, the R.A.F. s is such that 

y~ O(llcl) ~ - - ,  a > 0  (2.5) 
k~v 2 

and, given a nonnegative integer m, the constant d is such that 

d ~ d(v)/2(1 + 4~2m2) ~/2 (2.6) 

then there is 0 < ~l m ~ dm such that, if ]el < ~m, the image through E,,(., e) 
of A m ~ [~ is a subset of positive Lebesgue measure of the spectrum of H. 

Next we state the absolute continuity of the spectral measure and the 
existence of a set of degenerate energies of positive Lebesgue measure. 
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Theorem 2.5 (absolutely continuous spectrum). Let m be a non- 
negative integer. Under the hypotheses of Theorem 2.3 and Proposition 2.4, 
there exists 0 < d" < d,, such that, if 0 < ]el < d ' ,  then the restriction of the 
spectral measure of H to the image through Em(', ~) of the set Am c~ ~ is 
absolutely continuous. 

P ropos i t i on  2.6 (degeneracy). Let N be a positive integer. 
If, besides all hypotheses of Theorem 2.3, the R.A.F. f2 is such that 

1 
(2(]k]) < (18rc)2N 3 (2.7) 

k e Z  v 

and if 
d= d(v)/2(1 + 4~2N2) 1/2 (2.8) 

then there exists a subset of positive Lebesgue measure of the known part 
of the spectrum of H with degeneracy 2(2N+ 1) provided that 

[e I < I~(N)~-~ min {din} 
m = O . . . , N  

3. SKETCH OF THE PROOFS 

3.1. Proof of Theorem 2.3 

We divide this proof into three steps: 

Step 1. We show that, for studying equation (2.3), we can restrict 
ourselves to the study of ordinary differential equations (3.1) below, 
parametrized by rn e Z, owing to an invariant decomposition of the Hilbert 
space W under the action of the Laplace-Beltrami operator. 

Step 2. As usual [6, 8] we replace the Schr6dinger-like equation 
(3.1) below by a first order system. The existence of quasi-periodic 
solutions of this system is insured by the Dinaburg-Sinai theorem [6, 7, 8]. 

Step 3. The set of energies E for which such solutions exist is given 
by the range of a function, solution of an implicit equation (see (3.7) and 
(3.8) below). We analyze this equation to show that it admits solutions for 
e "small." 

S t e p  1 (passage to an ordinary differential equation). From a direct 
computation we can see that the space ~uf = L2(B, dx dy/F(x)) is the direct 
sum of the eigenspaces 

�9 dx 
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of the one-parameter group of y rotations: 

{ U ( ~ ) } ~ :  U('c)~(x, y ) :  ~t(x, y - z )  V 0 ~ W  

and the operator A o leaves the eigenspaces Wm of { U ( r ) } ~ v  invariant, 
that is, 

A 0 p (~  n Hm)_~H,, V m 6 2  

Now we set H m = --AQ I ( ~ N  ~m); then we may restrict ourselves to the 
study of Hm'S spectra, i.e., of the following ordinary differential equation, 
parametrized by the integer m: 

d z 
dx 2 (p(x) + eEv(x)  ~o(x) = ( E -  4~2m 2) (p(x) (3.1) 

We remark that m and - m  give the same equation; then we are allowed to 
consider m as a nonnegative integer in the following. 

S t e p  2 (quasiperiodic solutions). Let us consider the system 

dX(x) 
dx 

- [ [ J +  # Q ( z ) ]  X(x) 

dz 
- - = ( 2 )  
dx 

(3.2) 

where 

z ~ B(r) ~_ Cv; 
0 

, , :  

co~ v satisfies the diophantine condition (2.1) and V is the bounded 
holomorphic extension of v to B(r) (see Section 2). 

This system is equivalent to Eq. (3.1), provided 

~(1)(X) = @(X); X(2)(x ) : dcp/dx 
( E -  4~2m2) in 

E 
[ :  ( E -  4)zZm2)l/2; # : e  ( E _ 4 ~ Z m 2 ) U  2 (3.3) 

The following theorem/68) gives an existence result for (3.2). 

822/42/5-6-16 
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T h e o r e m  3.1 (Dinaburg-Sinai, Belokolos, Riissmann). Let r~ be 
0 < r~ < r, let d(v) be given by (2.4). There exists a function 

a: (fl; g) e A(co, f2, R) x D(d(v)) ~ C 

with the following properties: (i) ae.~(A(co, f2, R), D(d(v))) and (ii) 
a(fl, # ) e  N if fl and # are real; a(2, 0 ) = 0 ;  such that, if 2~A(co, f2, R), 
# e D(d(v)) and if ~ satisfies 

= 2 + a(2, g) (3.4) 

then there exist two linearly independent solutions of the system (3.2) of 
the form 

X+ (2, tt; x) = ei~~X()~ , it; cox) 
(3.5) 

X_ (2, IZ; x) = e i)~x](~., fi; cox) 

where 

[Z!2, g; z) I (3.6) 
) = Lx z ) j  

with Z, Z' belonging to ~(A(co, .(2, R), {D(d(v)) x B(roo)}) and 2re periodic 
in B(r~). 

A detailed version of the proof of this theorem is contained in Ref. 17, 
where we have followed Rtissman's point of view, (8'~8'19) using the notations 
of Ref. 14. Given the system (3.2), the idea is to define a succession of 
changes of the variable X, 2z-periodic in x and /~-depending, such that, 
after infinitely many steps, this system is transformed into another one, 
whose solutions are known. This idea goes back to Bogoliubov and 
Krylov, (2~ it was precisely stated by Kolmogorov, (5b) and the convergence 
follows the lines developed by Arnold (Sa) and Moser. (5c) 

S t e p  3. We see, from (3.3), (3.4) and the definition of the function 
"a," that the set of values of E for which the existence of quasiperiodic 
solutions holds through Theorem 3.1 is the range of the solutions of the 
following implicit equation: 

em( , 
[Em()~, e)--47z2m2]'/2=- )~-l-a 2, ~-[Em(.jo, ~-~-4~m211/2/l (3.7) 

with the condition 

Em( )~' ~ ) a/2 
e I_E,~(2~ ~ _-- ~,~-5m2 ] <~d(v) (3.8) 
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We shall now state the existence of solutions for this equation, provided e 
and m are small enough. More precisely, we get the following: 

P r o p o s i t i o n  3.2. Let m0 be an integer such that 0 ~ mo ~ d(v)/4~d. 
For each 0 ~< m ~< ran, m e 2, there is a constant 0 < dm ~< d such that there 
exists a complex-valued function E m belonging to ~ ( A m ,  O(dm) ) [where 
Am = A(m, (2, R) n T,~(d(v), d); see Definition 2.2], real for real arguments, 
and satisfying the condition (3.8) and the equation (3.7). 

This result will follow from the implicit function theorem in the 
holomorphic case. 

Indeed, let d' be such that d(v) < d' < (7/3) ~/2 d(v). L,,(d', d) will be the 
open not empty subset of ~ ( A m )  made up by the functions with absolute 
value in Jm(d', d). For e e D ( d )  and f e L m ( d ' ,  d), the function 

is well defined. 
Thus it is possible to conclude that there are 0 < d , ~ < d  and 

U m ~ ~ ( m m ,  D(dm) ) with the properties 

u,,,( ", e) ~ L,,(d', d); Fro(e, u,,(', e)) = 0 Ve e D(dm) 

and 

urn(', O) = idA~ 

Therefore the solution of the equations (3.7), (3.8) is given by 

E,,~(2, e) = Urn(if , e )  2 ~- 4n2rn z (3.9) 

Proof of  Proposition 2.4. In order to simplify the notations, in the 
next we set 

It is sufficient to show that the image of A~ n I m by Urn(', e) has a positive 
Lebesgue measure [see (3.9)]. In the following we sometimes omit the 
dependence on e. 

(1) We extend um ~ ( A ~ n I , , )  to a function ti m defined on the whole 
interval I m in the following way: A~ is a Cantor set and then there exists a 
countable family {Lq}q~ ~ of open disjoint intervals such that 

P ( A ~ ) n I m =  U Lu 
q~ t~ 

where p(B) = ~ \ B  with B _  ~. 
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For )~ e Lq = ]aq,  bq[  with 
linear interpolation: 

and 

aq, b q ~ A ~ I m ,  we define tim(2) 

~m(,~ ) = um(bq)()o - aq) - -  Um(aq)(,z - bq) 

bq --  aq 

(2) Let ]A[ be the Lebesgue measure of A c R. We remark that 

IA~r~Iml ~ Ilml - 10(A~)I 

[p(A~)I ~< ~ 20(Ikl) 
kc T~' 

But (2.5) and (2.6) imply, respectively, that 

Ip(A~)I ~ 1 - 6  

and 

Serra 

by the 

Then we have 

Ilmh > 1 (3.10a) 

IA~ C~ Iml ~ 6 > 0 (3.10b) 

(3) We define the following family of subsets of Im: 

where R is a positive constant to be determined below. We show that every 
interval belongs to ~4. Through the Lipschitz holomorphy of a(2, #) in 
A(o, O, R) D(d(v)), the Schwarz principle, the mean value theorem and the 
Cauchy integral formula, it is possible to show that there exist two positive 
constants d m ~ d m and K(m), depending on d, d', d(v) and m, such that if 
le[ <dm: 

]]Urn(', ~) -- idA,. 11L <- K(m)[el (3.11a) 

[~l < ~,,, = min{dm, �89 (3.11b) 

Now if 

we have 

[ ] ~ ( ' ,  01] L ~< 2 ][idA,. ]] c 
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and so, for each a, b ~ I., 

Ifim(b ) -  dtm(a)t ) 2  Ib - a[ 
II i6,m II L 

i.e., every interval belongs to ~r with K =  1/2 ]]idA,,llc. It is easy to show 
that d contains also all denumerable unions and intersections of intervals; 
then it contains all Borel subsets of lm ; in particular, the closed set A e n I,~ 
will belong d ;  then we have 

[fim(Ae~I,,)[ > 0  

from the definition of d and (3.10b). 

Proof of Theorem 2.5. The guide line of this proof follows Refs. 6 
and 14. We sometimes omit the dependence on e. 

Let h be a vector in La(R, dx)c~L~(R, dx); let 2 > 0  and f i > 0  be such 
that 2+i f l eAm;  let Ge~(~_+i~) be the resolvent of H,, at the point 
E,~()_.+ifl). Using the Wronskian lbrmula for the resolvent (6, 14) and 
some estimates on the fundamental solutions of the equation (3.1) (17), we 
can prove that there is a constant K (m) depending on d, d(v) and m, such 
that 

Then we set 

r < h, Gem(;~ + i~)h >l ~< K(~')]l h l[ L~(~,a~/F(~))I[ h II ~=(~,dx) 

Kin(h) ~ K ('~ Ilhl/z,l(~,dx/F(x))Ilhll L~(~,~x) 

Now we define two real functions qm ~ and /~me by 

~(_2, fl) + i~1~(2, fl) = E,,(_2 +_ ifl, ~) - Em(2o, e) 

tf a,, is the spectral measure of H,, corresponding to the vector h previously 
defined, we have 

Urn(-2' fl) ~ fl)2 ~< 2Km(h) (3.12) 
f [ E - E m ~ ) - ~ m ( 2 ,  fill2 + r/,~(_~, 

because the left hand side is twice the imaginary part of 

<h, Ge,,(i+iB)h ) 

By a direct computation from the relation (3.11a), it is possible to show 
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that there is a constant d~ ~< d,. and three constants K1,2,3, depending only 
on 2, such that, if lel < d~, and fl < 1 

]~m(.2, fl)] <~K~fl 

0 < K2fi ~< ~/m(.2, f l )<K3f l  

These estimates and the relation (3.12) allow us to conclude that if I e is an 
interval of Lebesgue measure 2fl, centered at Em(.2) there is a constant R 
given by 

K =  2K2/[(1 + K1) 2 + K~3 ] 

such that 

~h(Ie) < Rm2h)( I/el 
K 

which insures the absolute continuity of the spectral measure ah' 

Proof  of  Proposition 2.6. In what follows we use the notations 
stated in the proof of the proposition 2.4. 

We show that the spectrum is degenerated in the following sense: 
There exist 20,21, . . . ,2ueA ~ and 3(x)>0 such that, if [ z l<d  (m, then 
Vm=0,..., N, Em(~m, ~) is an allowed value for the energy E in the 
corresponding equation (3.1) and moreover: 

[Em()Cm) _ 4~2m2] 1/2 = [Em,(,~m,) __ 4gm,2] 1/2 

Vm, m '=O, . . . ,N  

We must then show that the Lebesgue measure of the intersection of the 
images of the allowed sets by urn, for m = 0,..., N, is positive. 

Thanks to (2.8), we get (3.10a), Vm =0,..., N. Moreover, 

I m ~ I t  if m > l  

So we can fix an interval I such that 

I II = 1 and I ~ I m Vm = 0 ..... N 

Now, the shape of the set A m and (2.8) give 

if 

[~m(I)[ ~ 1/18rcN Vm = 0,..., N (3.13a) 

lel <~(N)-- min {dm} (3.13b) 
m = 0 , . . . , N  
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The remark that Ftm(2)eJ,~(d',d)Wtel. ,  and Jm(d',d) c__Yt(d',d ) if m > / ,  
and (3.13a), allow us to fix another interval U such that 

1 
] UI = and U g ~i,.,(I) Vm = 0 ..... N 

18xN 

In what follows we set 

N N N 

A = - ~ ti,,,(Aa~I), p(A)=  U P(s =- ~ V.. 
m = 0  m = 0  m = 0  

Our aim is to show that IA] >0.  This will be achieved if we prove 

Indeed, as 

(3.14) will imply 

1 
[V~c~ UI < ~  IU[ (3.14) 

N 

IAI~IUI- ~ IV.,,~UI 

IAI>tUI-N(~IUI)=O 
Then, in order to show (3.14), we remark that 

Vm~UC_um(p(A~)c~l ) Vm =0,..., N 

But (3,11a), (3.11b), and (3.13b) give 

[u,,,(p(d a) r~ I)1 <~ } + lfidx~lJ a Jp(Z e) r~ tl 

and from (2.8), (3.10b), (2.7), and (3.15) we may conclude 

1 LuI 
IVmC~U[ < 9~N. 2 

(18~)2N)-  N 

(3.15) 
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